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Abstract

The effects of particle inertia and particle-to-fluid density on the time scales that measure the dispersion of particles by
isotropic turbulence are investigated. Numerical calculations are performed by means of a kinematic simulation method
coupled with Lagrangian tracking of discrete particles. Moreover, a simple semi-empirical model for predicting the time
scales of the fluid velocity seen by a particle as well as of the fluid–particle velocity covariance and the particle velocity
variance is proposed. Comparisons between simulations and model predictions are presented.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The Lagrangian time scale of the fluid velocity seen by a particle (the so-called eddy–particle interaction
time), TLp, is one of the most important parameters determining the dispersion of particles in a turbulent flow
field. Therefore, a variety of works have been performed to investigate the effects of inertia and velocity drift of
heavy particles on the eddy–particle interaction time scale. Hereafter the particles are considered as heavy if
their material density is much higher than that of the fluid. It is well known that TLp coincides with the
Lagrangian time scale of the turbulent fluid, TL, only in the limit of zero-inertia particles. For inertial heavy
particles, TLp may considerably differ from TL, and, depending on inertia and drift parameters, TLp/TL can be
greater or less than unity. In the absence of mean velocity drift between a particle and the fluid, TLp gradually
increases from the Lagrangian to the Eulerian turbulence time scale, TE, as the particle inertia increases
(Reeks, 1977; Wang and Stock, 1993). In contrast, the mean velocity drift causes TLp to diminish (Yudine,
1959; Csanady, 1963). This phenomenon is spoken of in the literature as the ‘‘crossing-trajectories effect’’.
0301-9322/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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In the present paper we investigate the effects of the particle inertia and the particle-to-fluid density ratio on
the eddy–particle interaction time scale as well as on the integral time scales of fluid–particle velocity covari-
ance and particle velocity variance. Numerical modeling is performed using the method of kinematic simula-
tion of isotropic turbulence coupled with Lagrangian tracking of discrete particles. Additionally, a simple
semi-empirical model is presented. This model is based on familiar Corrsin’s hypothesis and valid for arbi-
trary-density inertial particles. Both simulations and predictions deal mainly with the large-scale velocity fluc-
tuations and do not address the dynamics of small-scale turbulent eddies. The performance of the proposed
simulations and analytical predictions is examined in the whole range of particle-to-fluid density ratio (from
the case of heavy particles suspended in a gas to the situation of bubbles immersed in a liquid).

2. Kinematic simulation technique

Initiated by Kraichnan (1970), the kinematic simulation (KS) methods lie on the superposition of a large
number of random Fourier modes in order to reproduce a homogeneous, isotropic, Gaussian turbulence. Such
approaches are useful to examine some aspects connected with the behaviour of particles in a turbulent field at
rather low cost, and with the advantage that velocity interpolation is not necessary in the process of particle
tracking.

A divergence free velocity field is built according to the following truncated Fourier series for the local
instantaneous velocity:
uðx; tÞ ¼
XN

n¼1

½ðan � ĵnÞ cosðjn � xþ xntÞ þ ðbn � ĵnÞ sinðjn � xþ xntÞ�; ð1Þ
where jn denotes the wavenumber vectors (with corresponding unit vectors ĵn), and xn is the frequency of the
temporal mode associated to each spatial mode. The simplest way to define the parameters of the Fourier ser-
ies is to randomly select the frequency xn and the components of the vectors an, bn and jn from zero mean
Gaussian distributions with appropriate standard deviations to obtain the desired velocity variance
hu2

i i ¼ u02 and longitudinal integral length scale L. This method leads to the so-called Kraichnan spectrum,
whose normalized expression (u 0 = 1, L = 1) is E(j) = (4/p3)j4 exp(�j2/p) and which does not include any
inertial range, so that the turbulence Reynolds number ReL = u 0L/m cannot be modified (m is the fluid viscos-
ity). Nevertheless, this technique was used by Maxey (1987) who was able to predict the turbulence induced
increase in gravitational settling velocity of heavy particles, as well as by Wang and Stock (1992) in order to
investigate the time scale of the fluid seen by heavy particles suspended in a homogeneous isotropic turbulence.

More recent KS techniques make it possible to simulate the inertial range and to vary the turbulence Rey-
nolds number. Such techniques were developed mainly by Fung and his co-workers (e.g. Fung et al., 1992;
Sakai et al., 1992), who proposed the KS Inertial Model, where the vectors an and bn are selected to get an
inertial range spectrum E(j) = CKe2/3j�5/3 for j1 6 j 6 jN and E(j) = 0 for j < j1 or j > jN (j1 is the lowest
wave number in the simulation, and e is the dissipation rate of turbulent kinetic energy). The same authors
proposed also the KS Sweeping Model, where large-scale modes are simulated by Markov processes and
where the advection of small scales by large scales can be taken into account. The standard deviations of
the components of an and bn are selected to obtain the Von Karman spectrum
EðjÞ ¼ cg2

j4

ðg1 þ j2Þ17=6
for 0 6 j 6 jN and EðjÞ ¼ 0 for j > jN ; ð2Þ
which is close to E(j) = cg2j
�5/3 for large wavenumbers. Here, we adopt the same spectrum, but we assume

that only the mean flow advects the small-scale eddies, a method that is simpler and less time consuming than
the sweeping model. The unit vectors ĵn are randomly selected with isotropic distribution. In the large-scale
range, the wave numbers jn = jjnj are uniformly distributed from 0 to jc, where jc is a fixed cut-off wave num-
ber, whereas the small-scale wave numbers obey a geometric distribution from jc to jN, as suggested by Fung
et al. (1992). In their KS models, the small-scale frequency modes (jn > jc) are prescribed according to inertial
scaling, i.e. xn = kel/3j2/3, with the assumption ke1/3 � 1. In contrast, here the angular frequencies xn are ran-
domly selected from a zero mean Gaussian distribution with given standard deviation rx, a method that can
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be shown to yield a semi-Gaussian Eulerian time correlation in a reference frame moving with the mean velo-
city, with integral time scale T E ¼ r�1

x

ffiffiffiffiffiffiffiffi
p=2

p
. Therefore rx determines the moving Eulerian time scale of the

flow.
The spectrum E(j) and wave numbers are normalized in such a manner that u 0 = 1 and L = 1, or,

equivalently,
Table
Estima

ReL

180
1160
Z 1

0

EðjÞdj ¼ 3

2
and

3p
4

Z 1

0

j�1EðjÞdj ¼ 3

2
ð3Þ
leading to g1 = 0.558 and g2 = 1.196 for c = 1 in Eq. (2). Actually, due to the upper limitation in the wave
number range, a slight correction has to be brought to the coefficient c depending on the chosen value of
jN, in order that

R jN

0 EðjÞdj ¼ 3
2
. As a consequence, the integral length-scale L slightly differs from 1, but it

can still be calculated exactly by L ¼ p
2

R jN

0
j�1EðjÞdj.

In our computations, we fixed the normalized cut-off wave number at jc = 5, with six modes in the large-
scale range, and we set rx = 0.9. The parameters of the simulated turbulence, which depend mainly on the
maximum wave number jN, are then determined as follows:

• the dissipation rate of turbulent kinetic energy is given formally by e ¼ 2m
R1

0
j2EðjÞdj. Here, the dissipa-

tive spectrum 2mj2E(j) can only be integrated over the simulated wave number range, i.e. from 0 to jN.
Therefore we can write 2m

R jN

0 jEðjÞdj ¼ he, where h < 1 is a correction factor, and the Kolmogorov time
scale of the simulated turbulence obeys
sK ¼
m
e

� �1=2

¼ 2

Z 1

0

j2EðjÞdj

� ��1=2

¼ 2

h

Z jN

0

j2EðjÞdj

� ��1=2

; ð4Þ
• the dissipation rate is estimated by equating the energy in the small-scale modes to the energy obtained by
assuming that the spectrum in this range is nearly CKe2/3j�5/3, with CK = 1.5 (Fung et al., 1992):
CKe2=3

Z jN

jc

j�5=3 dj �
Z jN

jc

EðjÞdj; ð5Þ
• from Eqs. (4) and (5), the kinematic viscosity m and the Kolmogorov length scale g can be expressed by
m ¼ es2
K ¼ he 2

Z jN

0

j2EðjÞdj

� ��1

; g ¼ ðm3=eÞ1=4
; ð6Þ
• the Taylor microscale kg is obtained from e ¼ 15mu02=k2
g, which yields kg ¼

ffiffiffiffiffi
15
p

sKu0;
• finally, the Reynolds numbers ReL and Rek = u 0kg/m of the simulated turbulence can be expressed in terms

of the correction factor h. The Reynolds number values given in the following are rough estimates obtained
in assuming h ffi 0.6, keeping in mind that ReL is inversely proportional to h, and Rek is inversely propor-
tional to

ffiffiffi
h
p

.

In this paper, results are presented for two values of the estimated turbulence Reynolds number, namely
ReL ffi 180 (Rek ffi 49) and ReL ffi 1160 (Rek ffi 145). The corresponding maximum wave numbers of the kine-
matic simulation are jN = 16 (with N = 60) and jN = 65 (with N = 130), respectively, leading to the values of
the turbulence parameters shown in Table 1. In this table, the values of g/L can be verified to be very close to
Re�3=4

L , as it should be. The Lagrangian correlation functions and the corresponding Lagrangian time scale TL

have been computed from the statistics obtained by tracking 5 · 104 fluid particles, each in a different flow field
1
ted parameters of the simulated turbulence

Rek eL/u 03 sK/TL g/L kg/L TL/TE

49 1.126 0.129 0.020 0.272 0.424
145 0.832 0.059 0.0052 0.125 0.386
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Fig. 1. The Lagrangian and Eulerian time correlation functions obtained by kinematic simulation: solid lines—Rek ffi 49; dashed lines—
Rek ffi 145.

B. Oesterlé, L.I. Zaichik / International Journal of Multiphase Flow 32 (2006) 838–849 841
realization. Fig. 1 displays the Eulerian and Lagrangian autocorrelation functions resulting from the com-
puted statistics.

3. Lagrangian tracking of particles

The motion of a single arbitrary-density particle at low Reynolds number (based on relative velocity and
particle diameter) in a liquid (or gas) medium is governed by the equation
dvp

dt
¼ 18qfm

qpd2
ðu� vpÞ þ gþ qf

qp

Du

Dt
� g

� �
þ CA

qf

qp

Du

Dt
� dvp

dt

� �
; ð7Þ
where t is time, vp is the particle velocity, u is the carrier-flow velocity, qf and qp are the fluid and particle den-
sities, d is the particle diameter, and g is the gravity acceleration. The terms on the right-hand side of (7) quan-
tify, respectively, the viscous drag, the gravity force, the Archimedes displaced mass force, and the added mass
force. The quasi-stationary drag force obeys the Stokes law, even for bubbles which can be considered as rigid
particles in non-purified liquid, owing to interface contamination. Here, the Basset history force is neglected,
although we are aware that it may play a significant role in case of particles which are not much denser than
the fluid. Nevertheless, it is generally accepted that the effect of history force may also be neglected for very
light particles like bubbles. The material derivative of the fluid velocity, Du/Dt, is evaluated along the trajec-
tory of the surrounding fluid particle. Thus, the added mass force is written in the form proved by Auton et al.
(1988) and Magnaudet et al. (1995) in contrast to Maxey and Riley (1983) who took the fluid velocity deriv-
ative in the added mass term along the trajectory of the inertial particle. For spherical particles the added mass
factor, CA, is equal to 0.5.

For the sake of convenience, Eq. (7) is rewritten as
dvp

dt
¼ u� vp

sp

þ agþ b
Du

Dt
;

sp ¼
qp

qf

þ 1

2

� �
d2

18m
; a ¼

2ðqp � qfÞ
qf þ 2qp

; b ¼ 3qf

qf þ 2qp

;

ð8Þ
where sp is the effective particle response time that allows for the added mass effect, a is the buoyancy para-
meter, and b is the particle-to-fluid density parameter. Finally, the following useful form of the equation of
motion is obtained by introducing the unknown vector v = vp � bu:
dv

dt
¼ �Aðv� ð1� bÞuÞ þ ag; ð9Þ
where the components of the matrix A are Aij = dij/sp + boui/oxj.
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In this paper, numerical simulations of particle tracking are performed without gravity in order to focus in
a first stage on the comparison with the analytical model predictions in the case of zero mean drift. The tra-
jectories of many independent particles are computed without considering any effect of particle–particle inter-
actions or of the dispersed phase upon the turbulence, by numerically integrating Eq. (9) together with the
equation for the instantaneous particle location Rp,
dRp

dt
¼ vp ¼ vþ bu ð10Þ
by means of a third-order Runge–Kutta scheme. At each time step and particle location, the values of the fluid
velocity components and their gradients (which are involved in the expression of the matrix A) are deduced
from the analytical expression (1). It should be noticed that Eq. (9) is not applicable for fluid particles
(sp = 0). In this case, i.e. in order to compute TL, we used the following third-order Runge–Kutta scheme
based on the equation dx/dt = u(x, t):
un ¼ uðxn; tÞ; ~unþ1=2 ¼ u xn þ 1

2
unDt; t þ 1

2
Dt

� �
; ~unþ1 ¼ uðxn þ ð2~unþ1=2 � unÞDt; t þ DtÞ;

xnþ1 ¼ xn þ 1

6
ðun þ 4~unþ1=2 þ ~unþ1ÞDt;
where x denotes the fluid particle location, n is the initial time level and n + 1 is the final time level.
For each particle, a new turbulent field is generated and the initial location is randomly selected. The time

step is chosen according to Dt = min(sp/5, sK/5), and the duration of each particle tracking is tmax =
max(4TL,10sp). The velocity correlations and corresponding time scales are computed from time t = 5sp to
t = tmax, using at least 5 · 104 particles in as many different turbulent fields.

4. A model for predicting the time scales

4.1. The eddy–particle interaction time

In this section we present a simple semi-empirical model that incorporates the so-called inertia, crossing-
trajectories, and continuity effects on the eddy–particle interaction time scale for arbitrary-density particles,
that is, this model is valid in the whole range of the particle-to-fluid density parameter, b. To evaluate the
Lagrangian time scale of the fluid velocity seen by a particle we invoke the familiar Corrsin hypothesis (Corr-
sin, 1959). This hypothesis enables the Lagrangian velocity correlation to be expressed through the Eulerian
space–time correlations.

In homogeneous isotropic turbulence, the Lagrangian velocity correlation of a fluid element moving along
a particle trajectory may be written as (Reeks, 1977)
BLpijðsÞ ¼ u02WLpijðsÞ ¼ hu0iðx; tÞu0jðRpðt � sÞ; t � sÞi

¼
Z
hu0iðx; tÞu0jðx� r; t � sÞdðr� sðsÞÞidr;

s ¼ Sþ s0; S ¼Ws; s0 ¼
Z s

0

v0pðRpðs1ÞÞds1.

ð11Þ
Here WLpij(s) is the Lagrangian autocorrelation function of the fluid velocity seen by a particle, Rp is the
particle position along its trajectory, v0p is the particle fluctuating velocity, and u02 is the intensity of the fluid
fluctuating velocity. In (11), the particle displacement relative to the moving fluid, s, is presented as a sum of
two independent processes, the first of them is a mean motion with the drift velocity W = aspg and the second
is a fluctuating motion due to the particle response to velocity fluctuations of the turbulent fluid.

To determine (11) we use the Corrsin hypothesis that presumes independent averaging of the Eulerian
random velocity field and the particle displacement. By this means (11) can be represented in the form
hu0iðx; tÞu0jðx� r; t � sÞdðr� sðsÞÞi ¼ BEijðr; sÞ/ðr; sÞ;
BEijðr; sÞ ¼ hu0iðx; tÞu0iðx� r; t � sÞi; /ðr; sÞ ¼ hdðr� sðsÞÞi;

ð12Þ
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where BEij(r,s) is the second-order Eulerian space–time correlation of fluid velocities, and /(r,s) denotes the
probability of particle displacement over a distance r during time s.

The displacement probability, /(r,s), is usually approximated by a Gaussian distribution with a dispersion
that is expressed through the Lagrangian autocorrelation function. In this case, (12) turns into an implicit non-
linear equation because WLpij(s) appears in both left and right parts. Therefore, the relevant equation may be
solved only numerically or using iteration procedure. With a view to derive an explicit simple expression for
WLpij(s), which may be easily used in the subsequent calculation, we approximate the displacement probability
by the d-function
/ðr; sÞ ¼ dðr� sðsÞÞ. ð13Þ
As is customary, the Eulerian spatial–temporal correlation moment is given by the product of the spatial
and temporal correlations
BEijðr; sÞ ¼ BijðrÞWEðsÞ;
BijðrÞ ¼ hu0iðx; tÞu0jðx� r; tÞi; Bijð0Þ ¼ u02dij;

ð14Þ
where Bij(r) is the Eulerian spatial velocity correlation, and WE(s) is the Eulerian time autocorrelation
function.

In homogeneous isotropic turbulence, the tensor Bij(r) can be written as
BijðrÞ ¼ u02 GðrÞdij þ ½F ðrÞ � GðrÞ� rirj

r2

n o
; GðrÞ ¼ F ðrÞ þ r

2

dF ðrÞ
dr

; ð15Þ
where F(r) and G(r) are the longitudinal and transverse components depending on the separation distance
r � jrj. In (15), the latter relation stems from the continuity equation for isotropic turbulence.

Substituting (12)–(15) into (11) yields the following expression for the Lagrangian velocity autocorrelation
function seen by a particle:
WLpijðsÞ ¼ GðSÞdij þ ½F ðSÞ � GðSÞ� hsisji
s2

� �
WEðsÞ;

hsisji ¼ W iW js
2 þ hs0is0ji; s ¼ hskski1=2.

ð16Þ
The fluctuating component of particle displacement is evaluated from an approximate solution of the equa-
tion of motion (8), in which the derivative of the fluid velocity along the trajectory of the fluid particle is
replaced by that along the trajectory of the inertial particle,
dv0p

dt
¼

u0ðRp; tÞ � v0p

sp

þ b
du0

dt
. ð17Þ
From (17) it follows
s0 ¼
Z s

0

1� b
sp

Z s1

0

u0ðRpðs2ÞÞ exp � s1 � s2

sp

� �
ds2 þ bu0ðRpðs1ÞÞ

� �
ds1

� u00 sþ ð1� bÞsp exp � s
sp

� �
� 1

� �	 

. ð18Þ
The root mean square velocity, u 0, is taken as a characteristic fluctuating velocity of the fluid
ju00j ¼ u0. ð19Þ

According to (18) and (19) we obtain
hs0is0ji ¼
u02w2ðsÞ

3
dij; wðsÞ ¼ sþ ð1� bÞsp exp � s

sp

� �
� 1

� �
. ð20Þ
The quantity u 0w(s) is the effective free path of the particle in its fluctuating motion. As is clear, Eq. (16) along
with (20) takes into account the ‘‘crossing-trajectories effect’’ induced by the drift velocity W as well as the
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‘‘inertia effect’’ that is qualified by both the particle response time sp and the particle-to-fluid density para-
meter b. It should be noted that approximation (16), which follows from (13), treats the particle displacement
as a superposition of two processes: (i) the deterministic motion with the drift W and (ii) the random run with
the dispersion specified by (20). Such an interpretation of the particle displacement in a turbulent flow is valid
mainly at small time lag s as compared to the integral time scale of turbulence when the velocity autocorre-
lation is close to unity. Errors introduced by these assumptions in predicting the time scales can be especially
essential for large values of the structure parameter of the fluid turbulence m � TEu 0/L, where TE and L are the
time and length macroscales. Therefore, the results obtained with the help of approximations (13), (16) and
(20) should be thoroughly tested by comparison with numerical simulations.

In what follows, the Eulerian spatial and temporal correlations of the fluid turbulence are given by the
exponential approximations
F ðrÞ ¼ exp � r
L

� �
; WEðsÞ ¼ exp � s

T E

� �
. ð21Þ
Inserting (20) and (21) into (16) leads to the following expression for the Lagrangian velocity autocorrelation
seen by a particle:
WLpijðsÞ ¼ dij þ
m½3c2s2eiej � ð3c2s2 þ 2w2ðsÞÞdij�

6ðc2s2 þ w2ðsÞÞ1=2T E

( )
exp � sþ mðc2s2 þ w2ðsÞÞ1=2

T E

" #
. ð22Þ
Here c �W/u 0 is the drift parameter that measures the crossing-trajectories effect, W � jWj is the drift mag-
nitude, and ei �Wi/W denotes the unit vector along the velocity drift.

When the mean drift is absent (c = 0), the tensor WLpij(s) becomes isotropic
WLpijðsÞ ¼ WLpðsÞdij;
where according to (22)
WLpðsÞ ¼ 1� mwðsÞ
3T E

� �
exp � sþ mwðsÞ

T E

� �
. ð23Þ
In the limit of zero-inertia particles (sp! 0), it follows from (23) and (20)
WLðsÞ ¼ 1� ms
3T E

� �
exp �ð1þ mÞs

T E

� �
. ð24Þ
Eq. (24) determines the Lagrangian velocity autocorrelation function of the fluid turbulence. This produces
the following simple relation between the Lagrangian and Eulerian integral time scales of the fluid turbulence:
T L

T E

¼ 3þ 2m

3ð1þ mÞ2
. ð25Þ
In the case of zero mean drift, the autocorrelation (23) yields the Lagrangian integral time scale of the fluid
velocity seen by a particle in the form
T Lp ¼
Z 1

0

WLpðsÞds ¼
Z 1

0

1� mwðsÞ
3T E

� �
exp � sþ mwðsÞ

T E

� �
ds. ð26Þ
It is clear that TLp/TL is depending on three dimensionless parameters, namely, the Stokes number
StE � sp/TE, the structure parameter m, and the particle-to-fluid density parameter b. In the limit of heavy
particles (b = 0), TLp monotonically grows with increasing StE from TL at StE = 0 up to TE at StE =1. When
b = 0 and m 6 1, the integral in Eq. (26) may be approximated by the relation
T Lp ¼ T L þ ðT E � T LÞ
StE

1þ StE

� 0:9mSt2
E

ð1þ StEÞ2ð2þ StEÞ

" #
; ð27Þ
which asymptotically satisfies the limits for StE! 0, StE!1, and m! 0.
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In the case of low-inertia particles (StE	 1), one can obtain
T Lp

T L

¼ 1þ T E

T L

� 1

� �
ðb� 1ÞStE þOðSt2

EÞ.
In the opposite case of high-inertia particles (StE!1), (26) along with (20) leads to
T Lp

T L

¼ ð3þ 2mbÞð1þ mÞ2

ð3þ 2mÞð1þ mbÞ2
.

In accordance with (22), the Lagrangian integral time scales seen by a particle in the directions longitudinal
and normal to the mean relative velocity, W, are given, respectively, as
T l
Lp ¼

Z 1

0

1� mw2ðsÞ
3ðc2s2 þ 4w2ðsÞÞ1=2T E

" #
exp � sþ mðc2s2 þ w2ðsÞÞ1=2

T E

" #
ds; ð28Þ

T n
Lp ¼

Z 1

0

1� mð3c2s2 þ 2w2ðsÞÞ
6ðc2s2 þ 4w2ðsÞÞ1=2T E

" #
exp � sþ mðc2s2 þ w2ðsÞÞ1=2

T E

" #
ds. ð29Þ
The distinction between T l
Lp and T n

Lp is the so-called continuity effect that stems from the continuity relation
for the longitudinal and normal components of the velocity correlation in (15). When the crossing-trajectories
effect is very strong (c
 1), (28) and (29) yield, for any value of b, the well-known expressions of the time
scales seen in the longitudinal and normal directions (Csanady, 1963)
T l
Lp ¼

L
W
; T n

Lp ¼
L

2W
;

T l
Lp

T n
Lp

¼ 2.
4.2. The time scale of fluid–particle velocity covariance

The Lagrangian fluid–particle velocity covariance moment is defined by
BfpijðsÞ ¼< u0iðx; tÞv0pjðRpðt � sÞ; t � sÞ >;RpðtÞ ¼ x. ð30Þ
The particle equation of motion (17) generates the following equation for the fluid–particle covariance (30):
dBfpij

ds
� Bfpij

sp

¼ �BLpij

sp

þ b
dBLpij

ds
; ð31Þ
where BLpij(s) is the Lagrangian fluid velocity correlation seen by a particle, see Eq. (11). By making use of
matrix notation, the solution of (31) that satisfies Bfpij! 0 for s!1 may be written as
BfpðsÞ ¼
1� b

sp

Z 1

s
BLpðnÞ exp

s� n
sp

I

� �
dnþ bBLpðsÞ

¼ u02
1� b

sp

Z 1

s
WLpðnÞ exp

s� n
sp

I

� �
dnþ bWLpðsÞ

� �
¼ u02FfpðsÞ; ð32Þ
where I denotes the unit matrix.
The integral time scale of fluid–particle covariance is defined as
Tfp ¼ F�1
fp ð0Þ

Z 1

0

FfpðsÞds ¼ F�1
fp ð0ÞðTLp þ bspIÞ � spI. ð33Þ
If the Lagrangian fluid velocity autocorrelation seen by a particle is taken in the form of the exponential
approximation
WLpðsÞ ¼ expð�sT�1
LpÞ; ð34Þ
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the fluid–particle covariance function (32) is represented as
FfpðsÞ ¼ ðTLp þ spIÞ�1ðTLp þ bspIÞ expð�sT�1
LpÞ. ð35Þ
Substitution of (35) into (33) gives that the integral time scale of fluid–particle covariance is equal to the eddy–
particle interaction time scale
Tfp ¼ TLp.
4.3. The time scale of particle velocity variance

The Lagrangian particle velocity variance moment is defined by
BpijðsÞ ¼< v0piðx; tÞv0pjðRpðt � sÞ; t � sÞ >;RpðtÞ ¼ x. ð36Þ
The particle equation of motion (17) produces the following equation for the particle variance moment (36):
d2Bpij

ds2
� Bpij

s2
p

¼ �BLpij

s2
p

þ b2 d2BLpij

ds2
. ð37Þ
The solution of (37) that satisfies the boundary conditions
dBpij

ds
¼ 0 for s ¼ 0; Bpij ! 0 for s!1
is given by
BpðsÞ ¼ u02
1� b2

2sp

Z 1

0

exp � jsþ nj
sp

I

� �
þ exp � js� nj

sp

I

� �� �
WLpðnÞdnþ b2WLpðsÞ

	 


¼ u02FpðsÞ. ð38Þ

The integral time scale of particle velocity is defined by
Tp ¼ F�1
p ð0Þ

Z 1

0

FpðsÞds ¼ F�1
p ð0ÞTLp. ð39Þ
If the Lagrangian fluid velocity autocorrelation seen by a particle obeys Eq. (34), then the particle velocity
correlation function takes the form
FpðsÞ ¼
1� b2

2
ðIþ spT�1

LpÞ
�1 expð�sT�1

LpÞ þ exp � s
sp

I

� �� �	

þðI� spT�1
LpÞ
�1 expð�sT�1

LpÞ � exp � s
sp

I

� �� �

þ b2 expð�sT�1

LpÞ
and hence
Fpð0Þ ¼ ðIþ spT�1
LpÞ
�1ðIþ b2spT�1

LpÞ. ð40Þ
Substituting (40) into (39) yields the following formula for the particle time scale:
Tp ¼ ðIþ spT�1
LpÞðIþ b2spT�1

LpÞ
�1

TLp. ð41Þ
With no mean drift (W = 0), TLp = TLpI and thus the particle time scale is a scalar rather than a tensor. In this
case, Eq. (41) shows that the impact of particle inertia on Tp depends on the value of b. In perfect analogy to
TLp, Tp increases or decreases with sp for b < 1 or b > 1.

5. Simulation and prediction results

Relation (25) predicts that in isotropic turbulence the Lagrangian-to-Eulerian time scale ratio is only a
function of the turbulence structure parameter m. Fig. 2 illustrates this function. In Fig. 2, some theoretical
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Fig. 2. The Lagrangian-to-Eulerian time scale ratio against the turbulence structure parameter: 1—Eq. (25), 2—Philip (1967), 3—Lee and
Stone (1983), 4—Stepanov (1996), 5—Derevich (2001), 6—Fung et al. (1992), 7—Wang and Stock (1993), 8—present simulations,
9—Mazzitelli and Lohse (2004).
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dependences and numerical data known from the literature are also shown. It is seen that Eq. (25) is in qual-
itative agreement with all the data presented.

Fig. 3 presents the eddy–particle interaction time for heavy particles (b = 0). Predictions are performed for
m = 1, but the simulations relate to somewhat greater values of m. As is seen, the simulation data compare
favourably with the known correlation proposed by Wang and Stock (1993)
Fig. 3.
5—sim
T Lp ¼ 1� 0:644

ð1þ StEÞ0:4ð1þ0:01StEÞ

" #
T E;

T L

T E

¼ 0:356. ð42Þ
It can be observed that Eqs. (26) and (27) are very close even for m = 1, however they do not match the
numerical simulations as well as Eq. (42). The simulation results indicate that the influence of the Reynolds
number on TLp/TL is quite weak.

Eq. (26) along with (20) predicts that, with increasing particle response time, TLp monotonically increases
for particles which are heavier than the carrier fluid (b < 1) and decreases for particles which are lighter than
the carrier fluid (b > 1). The decrease in the eddy–particle interaction time for lighter particles is due to the
enhancement of their mobility with increasing Stokes number, as shown by Eq. (40). Owing to that, the fluid
velocity correlation defined along a particle path diminishes and hence TLp decreases. When the density of
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Effect of the Stokes number on the eddy–particle interaction time for heavy particles: 1—Eq. (26); 2—Eq. (27); 3—Eq. (42); 4,
ulations; 4—Rek ffi 49 and m = 1.14; 5—Rek ffi 145 and m = 1.29.
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both phases are equal (b = 1),TLp = TL for all values of StE. Fig. 4 shows the effect of particle inertia on the
eddy–particle interaction time scale seen by a particle for various particle-to-fluid densities. Here the particle
Lp
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Fig. 4. The eddy–particle interaction time as a function of the Stokes number and the particle-to-fluid density parameter at Rek ffi 49:
1–7—model predictions; 8–14—numerical simulations; 1,8—b = 0; 2, 9—0.5; 3, 10—1.0; 4, 11—1.5; 5,12—2.0; 6,13—2.5; 7,14—3.0.
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Fig. 5. Effect of the drift parameter on the eddy–particle interaction time in the directions longitudinal (I) and normal (II) to the mean
relative velocity vector: I—Eq. (28), II—Eq. (29), 1–5—b = 0, 0.5, 1, 2, 3.
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inertia is quantified by the Stokes number StL � sp/TL based on the Lagrangian time scale. As is clear from
Fig. 4, the model predictions and the numerical simulations are in full qualitative agreement.

The influence of the crossing-trajectories effect on the eddy–particle interaction times is illustrated in Fig. 5.
The predictions are appropriate to Eqs. (28) and (29) for m = StE = 1. It is clear that, for all values of b, an
increase in the drift results in a decrease in the eddy–particle interaction time. Thus, increasing the particle-to-
fluid density parameter or the drift parameter results in a qualitatively similar effect on the eddy–particle inter-
action time scales.

Fig. 6 presents the influence of the Stokes number on the Lagrangian time scale of the fluid velocity seen by
a bubble (the eddy–bubble interaction time scale) for b = 3. As is evident from comparison of Figs. 3 and 6,
the effect of the Stokes number on TLp for heavy particles and light bubbles is directly opposite.

6. Summary

The effects of particle inertia and particle-to-fluid density ratio upon the time scales that quantify the par-
ticle dispersion in homogeneous isotropic turbulence have been investigated by means of kinematic simula-
tion. Furthermore, a semi-empirical model, taking into account the inertia, crossing-trajectories and
continuity effects for arbitrary-density particles, has been developed. The results of the numerical simulations
and the model predictions are found to be in encouraging agreement.

The main finding drawn from the simulations and the analytical model is the directly opposite influence of
particle inertia upon the eddy–particle interaction time scale for heavy and light particles. Rather than increas-
ing as for heavy particles (b < 1), the eddy–particle interaction time decreases with increasing response time of
light particles or bubbles (b > 1). The model predicts that the effect of crossing-trajectories for heavy and light
particles is qualitatively similar and results in a monotonous decrease in the eddy–particle interaction time
scales for all values of the particle-to-fluid density parameter.

As a next step in the investigation of times scales that measure the turbulent dispersion of arbitrary-density
particles, we are going to simulate numerically the crossing-trajectories effect for light particles and bubbles to
check the model predictions presented in Fig. 5.
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